login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134016
Inverse score permutation of an Fibonacci -anti-Fibonacci zero sum game of 2 X 2 matrices.
0
2, 6, 10, 23, 42, 98, 178, 415, 754, 1758, 3194, 7447, 13530, 31546, 57314, 133631, 242786, 566070, 1028458, 2397911, 4356618, 10157714, 18454930, 43028767, 78176338, 182272782, 331160282, 772119895, 1402817466, 3270752362
OFFSET
1,1
COMMENTS
If the starting vector {0,1,1,0} means the matrix 2 X 2 MA gives A zero points and B one point, them the permutation: p = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}; reverses that to give {1,0,0,1}. This method makes the output of matrix MA the feed for MB and the output of MB the feed of MA as: M={{MA,0},{0,MB}}
FORMULA
M = {{0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 3, 1}}; v[1] = {0, 1, 1, 0}; p = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}} v[n_] := v[n] = p.M.v[n - 1] a(n) = Sum[v[n][[i]],{i,1,4}]
Conjecture: a(n) = 4*a(n-2)+a(n-4). G.f.: x*(x^3-2*x^2-6*x-2)/(x^4+4*x^2-1). [Colin Barker, Nov 01 2012]
MATHEMATICA
M = {{0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 3, 1}}; v[1] = {0, 1, 1, 0}; p = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}; v[n_] := v[n] = p.M.v[n - 1]; a = Table[Apply[Plus, v[n]], {n, 1, 50}]
CROSSREFS
Sequence in context: A342136 A049750 A295139 * A072297 A358908 A183036
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Jan 10 2008
STATUS
approved