login
A134013
Expansion of q * phi(q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.
4
1, 2, 0, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2)^5 * eta(q^16)^2 / ( eta(q)^2 * eta(q^4)^2 * eta(q^8) ) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, ...].
Moebius transform is period 16 sequence [ 1, 1, -1, -2, 1, -1, -1, 0, 1, 1, -1, 2, 1, -1, -1, 0, ...].
a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134014.
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = 2 * a(4*n + 1).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A112301(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n = 5) = 2 * A053692(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 (A003881). - Amiram Eldar, Nov 24 2023
EXAMPLE
G.f. = q + 2*q^2 + 2*q^5 + q^9 + 4*q^10 + 2*q^13 + 2*q^17 + 2*q^18 + 3*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^4], {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
PROG
(PARI) {a(n) = if( n>0 && (n+1)%4\2, (n%4) * sumdiv( n/gcd(n, 2), d, (-1)^(d\2)))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^8 + A)), n))};
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Oct 02 2007
STATUS
approved