login
A133886
a(n) = binomial(n+6,n) mod 6.
6
1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 3, 3, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 0, 0, 4, 4, 1, 3, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3
OFFSET
0,3
COMMENTS
Periodic with length 2*6^2 = 72.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1).
FORMULA
a(n) = binomial(n+6,6) mod 6.
G.f.: g(x) = (1+x+4*x^2-6*x^9-6*x^56+4*x^63+x^64+x^65+3*x^8*(1+x)(1-x^56)/(1-x^8)+4*x^9(1+x+x^2)(1-x^54)/(1-x^9))/(1-x^72).
a(n) = a(n-1)-a(n-2)+a(n-8)+a(n-11)-a(n-17)-a(n-20)-a(n-24)+a(n-25)+a(n-29)+ a(n-32)- a(n-38)-a(n-41)+a(n-47)-a(n-48)+a(n-49). - Harvey P. Dale, May 04 2013
MAPLE
A133886:=n->binomial(n+6, 6) mod 6; seq(A133886(n), n=0..100); # Wesley Ivan Hurt, Apr 30 2014
MATHEMATICA
Table[Mod[Binomial[n+6, n], 6], {n, 0, 110}] (* Harvey P. Dale, May 04 2013 *)
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Oct 10 2007
STATUS
approved