login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133880 n modulo p repeated p times (where p=10). 47
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Periodic with length p^2=100.

a(n) = A179051(n) for n < 90. [From Reinhard Zumkeller, Jun 27 2010]

LINKS

Table of n, a(n) for n=0..104.

FORMULA

The following formulas are given for a general parameter p (p=10 for this sequence).

a(n)=(1+floor(n/p)) mod p.

a(n)=1+floor(n/p)-p*floor((n+p)/p^2).

a(n)=(((n+p) mod p^2)-(n mod p))/p.

a(n)=((n+p-(n mod p))/p) mod p.

G.f. g(x)=((p-1)x^(p^2)-px^(p(p-1))+1)/((1-x)(1-x^p)(1-x^(p^2))).

G.f. g(x)=(1-x^p)*sum{0<=k<(p-1), (k+1)*x^(k*p)}/((1-x)(1-x^(p^2))).

MATHEMATICA

Flatten[Table[PadRight[{}, 10, Mod[n, 10]], {n, 11}]] (* Harvey P. Dale, May 10 2012 *)

CROSSREFS

Cf. A000040, A133620-A133625, A133630, A038509, A133634-A133636.

Cf. A133890, A133900, A133910.

Sequence in context: A111853 A111851 A111852 * A226233 A059995 A132272

Adjacent sequences:  A133877 A133878 A133879 * A133881 A133882 A133883

KEYWORD

nonn

AUTHOR

Hieronymus Fischer, Oct 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 13:22 EST 2018. Contains 317306 sequences. (Running on oeis4.)