login
A133851
Sloping binary representation of powers of 4 (A000302), slope = -1 .
2
1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
OFFSET
0,4
FORMULA
a(3n) = A000302(n), a(3n+1) = a(3n+2) = 0. - Alois P. Heinz, Dec 10 2020
EXAMPLE
When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NW-direction (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)
CROSSREFS
Cf. A037095, A077957, A105033, A000302, A098608, A102370(sloping binary numbers).
Sequence in context: A262227 A336731 A069026 * A062685 A192016 A028699
KEYWORD
base,nonn
AUTHOR
Philippe Deléham, Jan 06 2008
STATUS
approved