login
A133850
Number of partitions of n into two primes and a semiprime.
1
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 5, 3, 5, 3, 6, 7, 8, 4, 8, 6, 10, 8, 10, 7, 14, 10, 16, 12, 14, 9, 16, 14, 17, 12, 17, 16, 25, 15, 20, 20, 23, 20, 25, 20, 28, 22, 25, 23, 30, 23, 31, 28, 33, 28, 35, 32, 36, 30, 33, 32, 44, 35, 34, 37, 42, 43, 49, 39, 42, 42, 44, 49, 49, 40, 45, 51
OFFSET
1,10
LINKS
EXAMPLE
Examples:
n a(n)
0-7 0
8 1 2+2+4,
9 1 2+3+4,
10 2 2+2+6 = 3+3+4,
11 2 2+3+6 = 2+5+4,
12 2 3+3+6 = 3+5+4,
13 3 2+2+9 = 2+5+6 = 2+7+4,
14 5 2+2+10 = 2+3+9 = 3+5+6 = 3+7+4 = 5+5+4,
15 3 2+3+10 = 2+7+6 = 3+3+9,
16 5 2+5+9 = 3+3+10 = 3+7+6 = 5+5+6 = 5+7+4,
17 3 2+5+10 = 2+11+4 = 3+5+9,
18 6 2+2+14 = 2+7+9 = 3+5+10 = 3+11+4 = 5+7+6 = 7+7+4, etc.
MATHEMATICA
semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger[x] == 2; f[n_] := Block[{c = 0, i = j = 1, p = PrimePi[(n - 4)/2]}, While[i < p + 1, j = i; q = PrimePi[n - 4 - Prime@i]; While[j < q + 1, If[semiPrimeQ[n - Prime@i - Prime@j], c++ ]; j++ ]; i++ ]; c]; Array[f, 70] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A235998 A303949 A333462 * A160902 A082408 A270566
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Jan 21 2008
EXTENSIONS
More terms from Robert G. Wilson v, Jan 21 2008
STATUS
approved