This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133842 Decimal expansion of value of the maximum of Dawson's integral D_+(x). 7
 5, 4, 1, 0, 4, 4, 2, 2, 4, 6, 3, 5, 1, 8, 1, 6, 9, 8, 4, 7, 2, 7, 5, 9, 3, 3, 0, 2, 4, 1, 4, 7, 7, 1, 8, 6, 3, 9, 0, 6, 0, 4, 6, 7, 6, 8, 2, 6, 8, 2, 5, 8, 8, 7, 4, 5, 6, 3, 5, 4, 2, 1, 6, 9, 0, 8, 4, 2, 0, 5, 5, 8, 7, 9, 8, 1, 4, 6, 9, 7, 5, 3, 1, 4, 3, 9, 1, 9, 1, 0, 2, 1, 3, 2, 2, 7, 7, 7, 1, 0, 2, 4, 4, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 Eric Weisstein's World of Mathematics, Dawson's Integral Wikipedia, Dawson function FORMULA Equals 1/(2*A133841), since F'(x)=1-2*x*F(x). - Stanislav Sykora, Sep 17 2014 EXAMPLE 0.54104422463518169847... MATHEMATICA DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); y0 = DawsonF[x] /. FindRoot[ DawsonF'[x], {x, 1}, WorkingPrecision -> 110]; RealDigits[y0][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 26 2012, after Eric W. Weisstein *) PROG (PARI) Erfi(z) = -I*(1.0-erfc(I*z)); Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z); \\ same as F(x)=D_+(x) DDawson(z) = 1.0 - 2*z*Dawson(z); \\ Derivative of the above x = 0.5/solve(z=0.1, 2.0, real(DDawson(z))) \\ Stanislav Sykora, Sep 17 2014 CROSSREFS Cf. A133841, A133843, A243433. Sequence in context: A020847 A128355 A129522 * A199453 A245699 A115637 Adjacent sequences:  A133839 A133840 A133841 * A133843 A133844 A133845 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Sep 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 09:21 EST 2018. Contains 317268 sequences. (Running on oeis4.)