login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133825 Triangle whose rows are sequences of increasing and decreasing triangular numbers: 1; 1,3,1; 1,3,6,3,1; ... . 3
1, 1, 3, 1, 1, 3, 6, 3, 1, 1, 3, 6, 10, 6, 3, 1, 1, 3, 6, 10, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Reading the triangle by rows produces the sequence 1,1,3,1,1,3,6,3,1,..., analogous to A004737.

T(n,k) =  min(n*(n+1)/2,k*(k+1)/2), n, k >0.  The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 13 2013

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO]

FORMULA

O.g.f.: (1+qx)/((1-x)(1-qx)^2(1-q^2x)) = 1 + x(1 + 3q + q^2) + x^2(1 + 3q + 6q^2 + 3q^3 + q^4) + ... .

From Boris Putievskiy, Jan 13 2013: (Start)

a(n) = A004737(n)*(A004737(n)+1)/2.

a(n) = z*(z+1)/2, where z = floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1. (End)

EXAMPLE

Triangle starts

1;

1, 3, 1;

1, 3, 6, 3, 1;

1, 3, 6, 10, 6, 3, 1;

From Boris Putievskiy, Jan 13 2013: (Start)

The start of the sequence as table:

1...1...1...1...1...1...

1...3...3...3...3...3...

1...3...6...6...6...6...

1...3...6..10..10..10...

1...3...6..10..15..15...

1...3...6..10..15..21...

1...3...6..10..15..21...

. . .

The start of the sequence as triangle array read by rows:

1,

1, 3, 1,

1, 3, 6, 3, 1,

1, 3, 6, 10, 6, 3, 1,

1, 3, 6, 10, 15, 10, 6, 3, 1,

1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1,

1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1,

. . .

Row number k contains 2*k-1 numbers 1,3,...,k*(k-1)/2,k*(k+1)/2,k*(k-1)/2,...,3,1. (End)

MATHEMATICA

Module[{nn=10, ac}, ac=Accumulate[Range[nn]]; Table[Join[Take[ ac, n], Reverse[ Take[ac, n-1]]], {n, nn}]]//Flatten (* Harvey P. Dale, Apr 18 2019 *)

CROSSREFS

Cf. A000330 (row sums), A004737, A124258, A133826, A106255.

Sequence in context: A245541 A209563 A308624 * A156710 A114588 A253223

Adjacent sequences:  A133822 A133823 A133824 * A133826 A133827 A133828

KEYWORD

easy,nonn,tabf

AUTHOR

Peter Bala, Sep 25 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 11:44 EDT 2019. Contains 325254 sequences. (Running on oeis4.)