login
A133825
Triangle whose rows are sequences of increasing and decreasing triangular numbers: 1; 1,3,1; 1,3,6,3,1; ... .
3
1, 1, 3, 1, 1, 3, 6, 3, 1, 1, 3, 6, 10, 6, 3, 1, 1, 3, 6, 10, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10
OFFSET
0,3
COMMENTS
Reading the triangle by rows produces the sequence 1,1,3,1,1,3,6,3,1,..., analogous to A004737.
T(n,k) = min(n*(n+1)/2,k*(k+1)/2), n, k >0. The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 13 2013
LINKS
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
FORMULA
O.g.f.: (1+qx)/((1-x)(1-qx)^2(1-q^2x)) = 1 + x(1 + 3q + q^2) + x^2(1 + 3q + 6q^2 + 3q^3 + q^4) + ... .
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = A004737(n)*(A004737(n)+1)/2.
a(n) = z*(z+1)/2, where z = floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1. (End)
EXAMPLE
Triangle starts
1;
1, 3, 1;
1, 3, 6, 3, 1;
1, 3, 6, 10, 6, 3, 1;
From Boris Putievskiy, Jan 13 2013: (Start)
The start of the sequence as table:
1...1...1...1...1...1...
1...3...3...3...3...3...
1...3...6...6...6...6...
1...3...6..10..10..10...
1...3...6..10..15..15...
1...3...6..10..15..21...
1...3...6..10..15..21...
. . .
The start of the sequence as triangle array read by rows:
1,
1, 3, 1,
1, 3, 6, 3, 1,
1, 3, 6, 10, 6, 3, 1,
1, 3, 6, 10, 15, 10, 6, 3, 1,
1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1,
1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1,
. . .
Row number k contains 2*k-1 numbers 1,3,...,k*(k-1)/2,k*(k+1)/2,k*(k-1)/2,...,3,1. (End)
MATHEMATICA
Module[{nn=10, ac}, ac=Accumulate[Range[nn]]; Table[Join[Take[ ac, n], Reverse[ Take[ac, n-1]]], {n, nn}]]//Flatten (* Harvey P. Dale, Apr 18 2019 *)
CROSSREFS
Cf. A000330 (row sums), A004737, A124258, A133826, A106255.
Sequence in context: A245541 A209563 A308624 * A365968 A156710 A114588
KEYWORD
easy,nonn,tabf
AUTHOR
Peter Bala, Sep 25 2007
STATUS
approved