login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133818 a(n) = (8*n+3)*(8*n+5)*(8*n+7)*(8*n+9). 1
945, 36465, 229425, 801009, 2070705, 4456305, 8473905, 14737905, 23961009, 36954225, 54626865, 77986545, 108139185, 146289009, 193738545, 251888625, 322238385, 406385265, 506025009, 622951665, 759057585, 916333425, 1096868145 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Also 1/3-1/5-1/7+1/9+1/11-1/13-1/15+1/17+1/19--++... = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008

Also sum(2*(-1)^n/((4*n+3)*(4*n+5)), n=0..infinity) = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008

LINKS

Table of n, a(n) for n=0..22.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f.: 3*(315 + 10580*x + 18850*x^2 + 3028*x^3 - 5*x^4)/(1-x)^5.

E.g.f: (945 + 35520*x + 78720*x^2 + 36864*x^3 + 4096*x^4)*exp(x)

MAPLE

seq((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9), n=0..30);

sum(32*(4*n+3)/((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9)), n=0..infinity) = Pi*sqrt(2)/4-1. Maple: evalf(Pi*sqrt(2)/4-1, 30); gives 0.11072073453959156175397024752... - Miklos Kristof, Sep 15 2008

MATHEMATICA

Times@@@(#+{3, 5, 7, 9}&/@(8Range[0, 25]))  (* Harvey P. Dale, Mar 14 2011 *)

CROSSREFS

Sequence in context: A127666 A274756 A290034 * A289953 A112491 A263889

Adjacent sequences:  A133815 A133816 A133817 * A133819 A133820 A133821

KEYWORD

nonn,easy

AUTHOR

Miklos Kristof, Jan 06 2008, Sep 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 10:33 EST 2017. Contains 294887 sequences.