OFFSET
0,3
COMMENTS
Also, number of even binomial coefficient in rows 0 to 2^n of Pascal's triangle. [Aaron Meyerowitz, Oct 29 2013]
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. [Ross La Haye, Feb 22 2009]
FORMULA
a(n) = (1/2)(4^n - 2*3^n + 3*2^n - 2).
O.g.f.: x*(1-6*x+11*x^2)/[(-1+x)*(-1+2*x)*(-1+3*x)*(-1+4*x)]. - R. J. Mathar, Jan 11 2008
a(n) = A084869(n)-1 = A016269(n-2)+2^n-1. - Vladeta Jovovic, Jan 04 2008, corrected by Eric Rowland, May 15 2017
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2). - Ross La Haye, Jan 11 2008
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2). - Ross La Haye, Jan 11 2008
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). [Aaron Meyerowitz, Oct 29 2013]
EXAMPLE
a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then 6,20,6 then 8,28,56,70,56,28,8. [Aaron Meyerowitz, Oct 29 2013]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ross La Haye, Jan 03 2008, Jan 08 2008
EXTENSIONS
Edited by N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.
STATUS
approved