login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133766 a(n) = (4*n+1)*(4*n+3)*(4*n+5). 4
15, 315, 1287, 3315, 6783, 12075, 19575, 29667, 42735, 59163, 79335, 103635, 132447, 166155, 205143, 249795, 300495, 357627, 421575, 492723, 571455, 658155, 753207, 856995, 969903, 1092315, 1224615, 1367187, 1520415, 1684683, 1860375, 2047875, 2247567, 2459835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

L. B. W. Jolley, Summation of Series, Dover, 1961.

LINKS

Table of n, a(n) for n=0..33.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: 3*(5 + 85*x + 39*x^2 - x^3)/(1-x)^4 .

E.g.f: (15 + 300*x + 336*x^2 + 64*x^3)*exp(x) .

Sum_{n>=0} 4/a(n) = (Pi-2)/4. [Jolley, eq. 238]

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Harvey P. Dale, May 06 2012

Sum_{n>=0} (-1)^n/a(n) = 1/8 + (log(2*sqrt(2)+3) - Pi)/(16*sqrt(2)). - Amiram Eldar, Feb 27 2022

MAPLE

seq((4*n+1)*(4*n+3)*(4*n+5), n=0..40);

MATHEMATICA

Table[c=4n; (c+1)(c+3)(c+5), {n, 0, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {15, 315, 1287, 3315}, 30] (* Harvey P. Dale, May 06 2012 *)

PROG

(PARI) a(n)=(4*n+1)*(4*n+3)*(4*n+5) \\ Charles R Greathouse IV, Oct 16 2015

CROSSREFS

Cf. A001539, A154633.

Sequence in context: A105491 A158533 A284070 * A347980 A289951 A112489

Adjacent sequences:  A133763 A133764 A133765 * A133767 A133768 A133769

KEYWORD

nonn,easy

AUTHOR

Miklos Kristof, Jan 02 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 13:46 EDT 2022. Contains 357062 sequences. (Running on oeis4.)