login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133766 a(n) = (4*n+1)*(4*n+3)*(4*n+5). 4
15, 315, 1287, 3315, 6783, 12075, 19575, 29667, 42735, 59163, 79335, 103635, 132447, 166155, 205143, 249795, 300495, 357627, 421575, 492723, 571455, 658155, 753207, 856995, 969903, 1092315, 1224615, 1367187, 1520415, 1684683, 1860375, 2047875, 2247567, 2459835 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

L. B. W. Jolley, Summation of Series, Dover, 1961.

LINKS

Table of n, a(n) for n=0..33.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: 3*(5 + 85*x + 39*x^2 - x^3)/(1-x)^4 .

E.g.f: (15 + 300*x + 336*x^2 + 64*x^3)*exp(x) .

Sum_{n>=0} 4/a(n) = (Pi-2)/4. [Jolley, eq. 238]

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Harvey P. Dale, May 06 2012

Sum_{n>=0} (-1)^n/a(n) = 1/8 + (log(2*sqrt(2)+3) - Pi)/(16*sqrt(2)). - Amiram Eldar, Feb 27 2022

MAPLE

seq((4*n+1)*(4*n+3)*(4*n+5), n=0..40);

MATHEMATICA

Table[c=4n; (c+1)(c+3)(c+5), {n, 0, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {15, 315, 1287, 3315}, 30] (* Harvey P. Dale, May 06 2012 *)

PROG

(PARI) a(n)=(4*n+1)*(4*n+3)*(4*n+5) \\ Charles R Greathouse IV, Oct 16 2015

CROSSREFS

Cf. A001539, A154633.

Sequence in context: A105491 A158533 A284070 * A347980 A289951 A112489

Adjacent sequences: A133763 A133764 A133765 * A133767 A133768 A133769

KEYWORD

nonn,easy

AUTHOR

Miklos Kristof, Jan 02 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 19:19 EST 2022. Contains 358669 sequences. (Running on oeis4.)