This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133632 a(1)=1, a(n)=(p-1)*a(n-1), if n is even, else a(n)=p*a(n-2), where p=5. 7
 1, 4, 5, 20, 25, 100, 125, 500, 625, 2500, 3125, 12500, 15625, 62500, 78125, 312500, 390625, 1562500, 1953125, 7812500, 9765625, 39062500, 48828125, 195312500, 244140625, 976562500, 1220703125, 4882812500, 6103515625, 24414062500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Binomial transform = A134418: (1, 5, 14, 48, 152, 496, 1600,...). Double binomial transform = A048875: (1, 6, 25, 106, 449, 1902,...) - Gary W. Adamson, Oct 24 2007 LINKS Index entries for linear recurrences with constant coefficients, signature (0, 5). FORMULA The following formulas are given for a general natural parameter p>1 (p=5 for this sequence). G.f.: g(x)=x(1+(p-1)x)/(1-px^2). a(n)=p^floor((n-1)/2)*(p+(p-2)*(-1)^n)/2. a(n)=A133629(n)-A133629(n-1) for n>1. a(n+3) = a(n+2)*a(n+1)/a(n). [Reinhard Zumkeller, Mar 04 2011] MATHEMATICA RecurrenceTable[{a[1]==1, a[2]==4, a[n]==If[EvenQ[n], 4a[n-1], 5a[n-2]]}, a, {n, 30}] (* Harvey P. Dale, Jan 14 2013 *) CROSSREFS For the partial sums see A133629. Sequences with similar recurrence rules: A016116(p=2), A038754(p=3), A084221(p=4). Partial sums for other p: A027383(p=2), A087503(p=3), A133628(p=4). Other related sequences: A132666, A132667, A132668, A132669. Cf. A134418, A048875. Sequence in context: A125995 A080610 A047175 * A163141 A182584 A240860 Adjacent sequences:  A133629 A133630 A133631 * A133633 A133634 A133635 KEYWORD nonn AUTHOR Hieronymus Fischer, Sep 19 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:25 EST 2019. Contains 329848 sequences. (Running on oeis4.)