This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133567 A007318 * A133566. 4
 1, 1, 1, 1, 3, 1, 1, 6, 3, 1, 1, 10, 6, 5, 1, 1, 15, 10, 15, 5, 1, 1, 21, 15, 35, 15, 7, 1, 1, 28, 21, 70, 35, 28, 7, 1, 1, 36, 28, 126, 70, 84, 28, 9, 1, 1, 45, 36, 210, 126, 210, 84, 45, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums = A083329: (1, 2, 5, 11, 23, 47, 95,...). From Clark Kimberling, Feb 28 2012 (start): A133567 is jointly generated with A133084 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=x*u(n-1,x)+v(n-1,x)+1.  See the Mathematica section. (end) LINKS FORMULA Binomial transform of triangle A133566. EXAMPLE First few rows of the triangle are; 1; 1, 1; 1, 3, 1; 1, 6, 3, 1; 1, 10, 6, 5, 1; 1, 15, 10, 15, 5, 1; 1, 21, 15, 35, 15, 7, 1; ... MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]  (* A133567 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]  (* A133084 *) (* Clark Kimberling, Feb 28 2012 *) CROSSREFS Cf. A133566, A083329, A133084. Sequence in context: A275464 A067433 A256697 * A271665 A184049 A125230 Adjacent sequences:  A133564 A133565 A133566 * A133568 A133569 A133570 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Sep 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 19:53 EDT 2019. Contains 328319 sequences. (Running on oeis4.)