This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133482 a(p_1^e_1*p_2^e_2*.....*p_m^e_m) = (p_1^p_1)^e_1*(p_2^p^2)^e_2*.....*(p_m^p_m)^e_m where p_1^e_1*p_2^e_2*.....*p_m^e_m is the prime decomposition of n. 2
 1, 4, 27, 16, 3125, 108, 823543, 64, 729, 12500, 285311670611, 432, 302875106592253, 3294172, 84375, 256, 827240261886336764177, 2916, 1978419655660313589123979, 50000, 22235661, 1141246682444, 20880467999847912034355032910567, 1728, 9765625, 1211500426369012, 19683, 13176688, 2567686153161211134561828214731016126483469, 337500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Totally multiplicative sequence with a(p) = p^p for prime p. - Jaroslav Krizek, Oct 17 2009 LINKS FORMULA Multiplicative with a(p^e) = p^(pe). If n = Product p(k)^e(k) then a(n) = Product p(k)^(p(k)*e(k)). - Jaroslav Krizek, Oct 17 2009 EXAMPLE a(6)=a(2^1*3^1)=2^2^1*3^3^1=4*27=108 MAPLE A133482 := proc(n) local ifs, f ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul( (op(1, f)^op(1, f))^op(2, f), f=ifs) ; fi ; end: seq(A133482(n), n=1..30) ; # R. J. Mathar, Nov 30 2007 CROSSREFS Sequence in context: A218362 A108138 A119361 * A108139 A200768 A176147 Adjacent sequences:  A133479 A133480 A133481 * A133483 A133484 A133485 KEYWORD nonn,mult AUTHOR Masahiko Shin, Nov 29 2007 EXTENSIONS Corrected and extended by R. J. Mathar, Nov 30 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 05:33 EDT 2019. Contains 324218 sequences. (Running on oeis4.)