This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133476 a(n) = Sum_{k>=0} binomial(n,5*k+1). 14
 0, 1, 2, 3, 4, 5, 7, 14, 36, 93, 220, 474, 948, 1807, 3381, 6385, 12393, 24786, 50559, 103702, 211585, 427351, 854702, 1698458, 3368259, 6690150, 13333932, 26667864, 53457121, 107232053, 214978335, 430470899, 860941798, 1720537327, 3437550076, 6869397265 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Gary W. Adamson, Mar 14 2009: (Start) M^n * [1,0,0,0,0] = [A139398(n), A139761(n), A139748(n), A139714(n), a(n)] where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1] Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7] = 2^6 = 64. (End) {A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 18 2017 REFERENCES A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII. LINKS Robert Israel, Table of n, a(n) for n = 0..3260 Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2). FORMULA a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + 2a(n-5). Sequence is identical to its fifth differences. O.g.f.: x*(x-1)^3/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)) = (1/5)*(3*x^3-7*x^2+6*x-1)/(x^4-2*x^3+4*x^2-3*x+1)-(1/5)/(2*x-1). - R. J. Mathar, Nov 30 2007 Starting (1, 2, 3, 4, 5, 7, ...) = binomial transform of (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, ...). - Gary W. Adamson, Jul 03 2008 a(n) = round((2/5)*(2^(n-1)+phi^n*cos(Pi*(n-2)/5))), where phi is the golden ratio, round(x) is the nearest to x integer. - Vladimir Shevelev, Jun 18 2017 a(n+m) = a(n)*H_1(m) + H_1(n)*H_2(m) + H_5(n)*H_3(m) + H_4(n)*H_4(m) + H_3(n)*H_5(m), where H_1=A139398, H_3=A139714, H_4=A139748, H_5=A139761. - Vladimir Shevelev, Jun 18 2017 MAPLE f:= gfun:-rectoproc({a(n)=5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+2*a(n-5), seq(a(i)=i, i=0..4)}, a(n), remember): map(f, [\$0..30]); # Robert Israel, Dec 20 2015 MATHEMATICA LinearRecurrence[{5, -10, 10, -5, 2}, Range[0, 4], 40] (* Jean-François Alcover, Jul 10 2018 *) PROG (PARI) a(n) = sum(k=0, n\5, binomial(n, 5*k+1)); \\ Michel Marcus, Dec 21 2015 CROSSREFS Cf. A049016. Sequence in context: A048317 A037398 A048331 * A131023 A069514 A249155 Adjacent sequences:  A133473 A133474 A133475 * A133477 A133478 A133479 KEYWORD nonn AUTHOR Paul Curtz, Nov 29 2007 EXTENSIONS Better definition from N. J. A. Sloane, Jun 13 2008 Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 13:36 EDT 2018. Contains 313751 sequences. (Running on oeis4.)