login
A133471
a(n) = (n^2)*a(n-1) + a(n-2).
1
0, 1, 4, 37, 596, 14937, 538328, 26393009, 1689690904, 136891356233, 13690825314204, 1656726754374917, 238582343455302252, 40322072770700455505, 7903364845400744581232, 1778297412287938231232705, 455252040910557587940153712, 131569618120563430852935655473
OFFSET
0,3
COMMENTS
Alternates between even and odd.
After a(3) = 37, which is the next prime?
Next primes are a(9) = 136891356233, a(51) = 2.5... * 10^132, a(249) = 1.7... * 10^980. - Charles R Greathouse IV, Mar 13 2015
Same as A036245 except for n=0. - Georg Fischer, Oct 07 2018
LINKS
MAPLE
A133471 := proc(n)
if n <= 1 then
n;
else
n^2*procname(n-1)+procname(n-2) ;
end if;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==n^2 a[n-1]+a[n-2]}, a, {n, 30}] (* or *) Module[{nn=20, frac}, frac=Range[nn]^2; Join[{0}, Table[Denominator[ FromContinuedFraction[Take[frac, n]]], {n, nn}]]] (* Harvey P. Dale, Mar 14 2015 *)
PROG
(PARI) v=vector(100); v[1]=1; v[2]=4; for(n=3, #v, v[n]=n^2*v[n-1]+v[n-2]); v=concat(0, v) \\ Charles R Greathouse IV, Mar 13 2015
(GAP) a:=[0, 1];; for n in [3..20] do a[n]:=(n-1)^2*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Oct 07 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 28 2007
EXTENSIONS
Terms and definition corrected by Harvey P. Dale, Mar 13 2015
STATUS
approved