

A133442


A geometrical graph substitution of a tesstetrahedron embedded in a cube as an eight"tone" allnaturals musical scale such that here the connections can be cut to isolate the tetrahedra.


0



3, 6, 8, 1, 3, 8, 1, 3, 6, 3, 6, 8, 1, 6, 8, 1, 3, 6, 3, 6, 8, 1, 6, 8, 1, 3, 8, 4, 5, 7, 2, 4, 7, 2, 4, 5, 4, 5, 7, 2, 5, 7, 2, 4, 5, 4, 5, 7, 2, 5, 7, 2, 4, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There is a definite difference in the music that the isolated tetrahedra gives compared to the connected ones.


LINKS

Table of n, a(n) for n=1..54.


FORMULA

p=0 such that: 1 > {p*2, 3, 6, 8} 2 > {p, 4, 5, 7} 3 > {1, p*4, 6, 8} 4 > {2, p*3, 5, 7} 5 > {2, 4, p*6, 7} 6 > {1, 3, p*5, 8} 7 > {2, 4, 5, p*8} 8 > {1, 3, 6, p*7}


MATHEMATICA

s[1] = {3, 6, 8};
s[2] = {4, 5, 7};
s[3] = {1, 6, 8};
s[4] = {2, 5, 7};
s[5] = {2, 4, 7};
s[6] = {1, 3, 8};
s[7] = {2, 4, 5};
s[8] = {1, 3, 6};
t[a_] := Flatten[s /@ a];
p[0] = {1, 2}; p[1] = t[p[0]]; p[n_] := t[p[n  1]];
p[3]


CROSSREFS

Sequence in context: A067697 A137128 A256372 * A133193 A200131 A298907
Adjacent sequences: A133439 A133440 A133441 * A133443 A133444 A133445


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Nov 26 2007


STATUS

approved



