%I #27 May 14 2022 11:27:01
%S 7,2,1,3,4,7,5,2,0,4,4,4,4,8,1,7,0,3,6,7,9,9,6,2,3,4,0,5,0,0,9,4,6,0,
%T 6,8,7,1,3,3,2,2,9,7,7,0,7,6,4,9,2,9,6,7,0,6,7,7,2,4,7,0,3,4,6,5,5,5,
%U 4,6,0,9,5,9,0,5,9,2,5,3,9,9,4,2,7,6,3,3,1,1,4,4,6,7,5,3,1,7,2,2,4,8,4,9,8
%N Decimal expansion of 1/(2 log 2).
%C PrimePi(n) = A000720(n) => (log n)/(2 log 2) for all n > 2. An elegant proof is given in Kontoyiannis.
%C Base 4 logarithm of the natural logarithm base. - _Alonso del Arte_, Aug 31 2014
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant p. 319 and Section 5.11 Feller's coin tossing p. 341.
%H Ioannis Kontoyiannis, <a href="http://arXiv.org/abs/0710.4076">Some information-theoretic computations related to the distribution of prime numbers</a>, arXiv:0710.4076 [cs.IT], 2007.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 0.7213475204444817036799623405009460...
%p Digits:=100: evalf(0.5/log(2)); # _R. J. Mathar_, Nov 09 2007
%t RealDigits[1/(2Log[2]), 10, 128][[1]] (* _Alonso del Arte_, Aug 31 2014 *)
%o (PARI) 1/log(4) \\ _Charles R Greathouse IV_, Mar 24 2016
%Y Cf. A000720, A016627 (reciprocal).
%K cons,easy,nonn
%O 0,1
%A _Jonathan Vos Post_, Oct 26 2007
%E More terms from _R. J. Mathar_, Nov 09 2007