The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133313 Primes p such that 3p-2 and 3p+2 are primes (see A125272) and its decimal representation finishes with 3. 0
 3, 13, 23, 43, 103, 163, 293, 313, 433, 523, 953, 1013, 1063, 1153, 1283, 1303, 1483, 1693, 1723, 1783, 1913, 2003, 2333, 3533, 3823, 3943, 4003, 4013, 4093, 4943, 5483, 6043, 6133, 6173, 6473, 6803, 7523, 7573, 7603, 7673, 7853, 7993, 8513, 9283, 9343 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Theorem: If in the triple (3n-2,n,3n+2) all numbers are primes, then n=5 or the decimal representation of n finishes with 3 or 7. Proof: Similar to A136191. Alternative Mathematica proof: Table[nn = 10k + r; Intersection @@ (Divisors[CoefficientList[(3nn - 2) nn(3nn + 2), k]]), {r, 1, 9, 2}]; This gives {{1, 5}, {1}, {1, 5}, {1}, {1, 5}}. Therefore only r=3 and r=7 allow nontrivial divisors (excluding nn=5 itself). LINKS MATHEMATICA TPrimeQ = (PrimeQ[ # - 2] && PrimeQ[ #/3] && PrimeQ[ # + 2]) &; Select[Select[Range[100000], TPrimeQ]/3, Mod[ #, 10] == 3 &] Select[Prime[Range[1200]], Mod[#, 10]==3&&AllTrue[3#+{2, -2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 18 2019 *) CROSSREFS Cf. A136204 (finishing with 7), A136191, A136192, A125272. Sequence in context: A147473 A030431 A090146 * A230026 A260798 A102010 Adjacent sequences:  A133310 A133311 A133312 * A133314 A133315 A133316 KEYWORD nonn,base AUTHOR Carlos Alves, Dec 21 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 04:25 EDT 2021. Contains 343030 sequences. (Running on oeis4.)