Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Jan 20 2024 09:41:20
%S 0,1,1,5,34,329,4056,60997,1082320,22137201,512801920,13269953861,
%T 379400765184,11877265764025,404067857880064,14843708906336325,
%U 585606019079612416,24693567694861202273,1108343071153648926720,52757597474618636748421,2654611611461360017408000
%N a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*n^(n-k-1)/(n-k)!.
%H Alois P. Heinz, <a href="/A133297/b133297.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: log(1-LambertW(-x)).
%F a(n) ~ n^(n-1)/2. - _Vaclav Kotesovec_, Sep 25 2013
%F Conjecture: a(n) = (n-1)!*( Sum_{k >= 0} (-1)^k * n^(n+k)/(n+k)! - (-1/e)^n ) for n >= 1. Cf. A000435. - _Peter Bala_, Jul 23 2021
%F From _Thomas Scheuerle_, Nov 17 2023: (Start)
%F This conjecture is true. Let "gamma" be the lower incomplete gamma function: gamma(n, x) = (n-1)! (1 - exp(-x)*Sum_{k = 0..n-1} x^k/k! ), then we can get the upper incomplete gamma function Gamma(n, x) = gamma(n, oo) - gamma(n, x). By inserting according the formula below, we will obtain the formula from Peter Bala.
%F a(n) = (-1)^(n+1)*Gamma(n, -n)/exp(n) = (-1)^(n+1)*A292977(n-1, n), for n > 0, where Gamma is the upper incomplete gamma function. (End)
%t Table[n!*Sum[(-1)^(k+1)*n^(n-k-1)/(n-k)!, {k,n}], {n,0,25}] (* _Stefan Steinerberger_, Oct 19 2007 *)
%t With[{m=25}, CoefficientList[Series[Log[1-LambertW[-x]], {x,0,m}], x]*Range[0,m]!] (* _G. C. Greubel_, Aug 02 2019 *)
%o (PARI) my(x='x+O('x^25)); concat([0], Vec(serlaplace( log(1-lambertw(-x)) ))) \\ _G. C. Greubel_, Aug 02 2019
%o (Magma)
%o a:= func< n | n eq 0 select 0 else Factorial(n)*(&+[(-1)^(k+1)*n^(n-k-1)/Factorial(n-k): k in [1..n]]) >;
%o [a(n): n in [0..25]]; // _G. C. Greubel_, Aug 02 2019
%o (SageMath)
%o def a(n):
%o if (n==0): return 0
%o else: return factorial(n)*sum((-1)^(k+1)*n^(n-k-1)/factorial(n-k) for k in (1..n))
%o [a(n) for n in (0..25)] # _G. C. Greubel_, Aug 02 2019
%o (GAP)
%o a:= function(n)
%o if n=0 then return 0;
%o else return Factorial(n)*Sum([1..n], k-> (-1)^(k+1)*n^(n-k-1)/Factorial(n-k));
%o fi;
%o end;
%o List([0..25], n-> a(n) ); # _G. C. Greubel_, Aug 02 2019
%Y Cf. A001865 (Gamma(n, n)/exp(-n)).
%Y Cf. A000272, A000435, A277458, A292977.
%K nonn,easy
%O 0,4
%A _Vladeta Jovovic_, Oct 17 2007
%E More terms from _Stefan Steinerberger_, Oct 19 2007