This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133294 a(n) = 2*a(n-1) + 10*a(n-2), a(0)=1, a(1)=1. 8
 1, 1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of [1, 0, 11, 0, 121, 0, 1331, 0, 14641, 0, ...]=: powers of 11 (A001020) with interpolated zeros. - Philippe Deléham, Dec 02 2008 A083101 is an essentially identical sequence (with a different start). - N. J. A. Sloane, Dec 31 2012 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,10). FORMULA a(n) = Sum_{k=0..n} A098158(n,k)*11^(n-k). G.f.: (1-x)/(1-2*x-10*x^2). a(n) = A083101(n-1) for n >= 1. a(n) = (1/2)*(1+sqrt(11))^n + (1/2)*(1-sqrt(11))^n. - Paolo P. Lava, Jun 10 2008 G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(11*k-1)/( x*(11*k+10) - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 14 2013 MATHEMATICA a[n_]:= Simplify[((1+Sqrt[11])^n + (1-Sqrt[11])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1-x)/(1-2x-10x^2), {x, 0, 30}], x] (* Or *) LinearRecurrence[{2, 10}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Aug 02 2019 (MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019 (Sage) ((1-x)/(1-2*x-10*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019 (GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+10*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019 CROSSREFS Cf. A083101, A090042. Sequence in context: A078194 A034510 A083101 * A082240 A088596 A077293 Adjacent sequences:  A133291 A133292 A133293 * A133295 A133296 A133297 KEYWORD nonn,easy AUTHOR Philippe Deléham, Dec 20 2007 EXTENSIONS Terms a(23) onward added by G. C. Greubel, Aug 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 08:04 EDT 2019. Contains 328146 sequences. (Running on oeis4.)