This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133293 First differences of A133292. 0
 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Periodic with period 9. - Colin Barker, Apr 04 2015 LINKS Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1). FORMULA a(n) = (1/9)*{-(n mod 9)-[(n+1) mod 9]-[(n+1) mod 9]+8*[(n+1) mod 9]-10*[(n+1) mod 9]+8*[(n+1) mod 9]-[(n+1) mod 9]-[(n+1) mod 9]-[(n+1) mod 9]}, with n>=0. - Paolo P. Lava, Oct 24 2007 G.f.: x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1) / ((x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 04 2015 MATHEMATICA Differences[PadRight[{}, 111, {1, 1, 2, 4, 7, 2, 7, 4, 2}]] (* Harvey P. Dale, Apr 29 2012 *) LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 2, 3, -5, 5, -3, -2}, 105] (* Ray Chandler, Aug 26 2015 *) PROG (PARI) concat(0, Vec(x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1)/((x^2+x+1)*(x^6+x^3+1)) + O(x^100))) \\ Colin Barker, Apr 04 2015 CROSSREFS Sequence in context: A096099 A019780 A227833 * A262565 A096289 A131295 Adjacent sequences:  A133290 A133291 A133292 * A133294 A133295 A133296 KEYWORD sign,easy AUTHOR Paul Curtz, Oct 17 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.