login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133293 First differences of A133292. 0
0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5, -3, -2, -1, 0, 1, 2, 3, -5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Periodic with period 9. - Colin Barker, Apr 04 2015

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1).

FORMULA

a(n) = (1/9)*{-(n mod 9)-[(n+1) mod 9]-[(n+1) mod 9]+8*[(n+1) mod 9]-10*[(n+1) mod 9]+8*[(n+1) mod 9]-[(n+1) mod 9]-[(n+1) mod 9]-[(n+1) mod 9]}, with n>=0. - Paolo P. Lava, Oct 24 2007

G.f.: x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1) / ((x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 04 2015

MATHEMATICA

Differences[PadRight[{}, 111, {1, 1, 2, 4, 7, 2, 7, 4, 2}]] (* Harvey P. Dale, Apr 29 2012 *)

LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 2, 3, -5, 5, -3, -2}, 105] (* Ray Chandler, Aug 26 2015 *)

PROG

(PARI) concat(0, Vec(x*(x^6+3*x^5+6*x^4+x^3+6*x^2+3*x+1)/((x^2+x+1)*(x^6+x^3+1)) + O(x^100))) \\ Colin Barker, Apr 04 2015

CROSSREFS

Sequence in context: A096099 A019780 A227833 * A096289 A131295 A102642

Adjacent sequences:  A133290 A133291 A133292 * A133294 A133295 A133296

KEYWORD

sign,easy,changed

AUTHOR

Paul Curtz, Oct 17 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 00:35 EDT 2015. Contains 261279 sequences.