The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133274 Numbers which are both 12-gonal and centered 12-gonal numbers. 0
 1, 793, 382537, 184382353, 88871911921, 42836077163881, 20646900321079033, 9951763118682930337, 4796729176304851343713, 2312013511215819664739641, 1114385715676848773553163561, 537131602942729893032960097073 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS We write G12(r)=5*r^2-4*r and CG12(p)=6*p^2-6*p+1. A number has both properties iff there exist r and p such that 2*(5*r-2)^2=15*(2*p-1)^2+3. The Diophantine equation (2*X)^2=30*Y^2+6 gives 2 new sequences. We obtain also 2 new sequences with the indices given by r and p respectively. LINKS Index entries for linear recurrences with constant coefficients, signature (483,-483,1). FORMULA a(n+2)=482*a(n+1)-a(n)+312 ; a(n+1)=241*a(n)+156+44*(30*a(n)^2+39*a(n)+12)^0.5 ; G.f.: (z+310*z^2+z^3)/((1-z)*(1-482*z+z^2)). a(n)=-(13/20)+(33/40)*{[241+44*sqrt(30)]^n+[241-44*sqrt(30)]^n}-(3/20)*sqrt(30)*{[241-44*sqrt(30)]^n-[241+44*sqrt(30)]^n }, with n>=0 [From Paolo P. Lava, Nov 25 2008] MATHEMATICA LinearRecurrence[{483, -483, 1}, {1, 793, 382537}, 20] (* Harvey P. Dale, Aug 27 2020 *) CROSSREFS Sequence in context: A213471 A075667 A136543 * A261657 A086393 A336943 Adjacent sequences:  A133271 A133272 A133273 * A133275 A133276 A133277 KEYWORD nonn,easy AUTHOR Richard Choulet, Oct 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:19 EDT 2020. Contains 337173 sequences. (Running on oeis4.)