login
A133248
Provides a relationship between a representation of Lisp programs of length n and Chaitan's Omega: If[A124027(n)==0, then row sum of[A124027].
0
9, 5798, 2356779, 6536382
OFFSET
1,1
COMMENTS
If the first two rows of A124027 are left off, the wrong answer is given for the number of program representations necessary to be tested. My machine won't calculate to the next one at n=25. This line of reasoning also produces the sequence: Flatten[Table[If[c[[n]] == 1, n, {}], {n, 1, Length[c]}]] {7, 14, 20, 21, 25, 30, 31, 33, 37, 38, 39, 40, 41, 42, 45, 47, 48, 49, 51, 52, 53, 55, 60}
FORMULA
a(n) = If[A124027(m)==0, then row sum of[A124027](m)
MATHEMATICA
(*A079365*); c = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}; (*A124027*); p[0, x] = 0; p[1, x] = x; p[2, x] = 1; p[k_, x_] := p[k, x] = Sum[ p[j, x]*p[k - j, x], {j, 2, k - 1}]; Flatten[Table[If[c[[n + 1]] == 1, Sum[CoefficientList[p[n, x], x][[m]], {m, 1, Length[CoefficientList[p[n, x], x]]}], {}], {n, 0, 21}] ]
CROSSREFS
Sequence in context: A151581 A145263 A185821 * A125542 A349876 A349896
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Oct 14 2007
STATUS
approved