This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133225 Largest prime <= 2^((n+1)/2). 1
 2, 2, 3, 5, 7, 11, 13, 19, 31, 43, 61, 89, 127, 181, 251, 359, 509, 719, 1021, 1447, 2039, 2887, 4093, 5791, 8191, 11579, 16381, 23167, 32749, 46337, 65521, 92681, 131071, 185363, 262139, 370723, 524287, 741431, 1048573, 1482907, 2097143, 2965819 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If one is trying to decide whether an n+1 digit binary number is prime, this is the largest prime for which one needs to test divisibility. For example a six digit number like 110101 must be below 64, so only primes up to 7 are needed to test divisibility. Compare with sequence A132153. LINKS FORMULA a(n) = A007917[A017910(n+1)]. - R. J. Mathar MAPLE seq(prevprime(floor(2^((n+1)*1/2))+1), n=1..40); - Emeric Deutsch A017910 := proc(n) floor(2^(n/2)) ; end: A007917 := proc(n) prevprime(n+1) ; end: A133225 := proc(n) A007917(A017910(n+1)) ; end: seq(A133225(n), n=1..60) ; - R. J. Mathar MATHEMATICA PrevPrim[n_] := Block[{k = n}, While[ !PrimeQ@k, k-- ]; k]; f[n_] := PrevPrim@ Floor@ Sqrt[2^(n + 1)]; Array[f, 42] (* Robert G. Wilson v *) Table[Prime[PrimePi[2^((n + 1)/2)]], {n, 1, 50}] - Stefan Steinerberger CROSSREFS Cf. A132153. Sequence in context: A120412 A022864 A039894 * A066889 A214040 A077419 Adjacent sequences:  A133222 A133223 A133224 * A133226 A133227 A133228 KEYWORD nonn AUTHOR Anthony C Robin, Jan 03 2008 EXTENSIONS More terms from Stefan Steinerberger, R. J. Mathar, Robert G. Wilson v and Emeric Deutsch, Jan 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .