login
A133123
Double Sophie Germain semiprimes: semiprimes s such that s1=2s+1 and s2=2s1+1 are also semiprimes.
2
38, 46, 106, 129, 133, 145, 169, 201, 203, 235, 289, 291, 298, 334, 335, 381, 407, 417, 458, 489, 497, 529, 538, 579, 583, 597, 623, 626, 649, 685, 689, 694, 707, 758, 767, 781, 815, 898, 899, 921, 926, 959, 995, 1073, 1079, 1082, 1094, 1099, 1139, 1142
OFFSET
1,1
COMMENTS
Numbers n such that both n and 2n+1 are in A111153.
If 29+30*k, 39+40*k and 47+48*k are all primes then 58+60*k is in the sequence. Thus Dickson's conjecture implies this sequence is infinite. - Robert Israel, Mar 17 2019
LINKS
FORMULA
n, n1=2n+1 and n2=2n1+1 are semiprimes.
EXAMPLE
38=2*19, 2*38+1=77=7*11 and 2*77+1=155=5*31;
129=3*43, 2*129+1=259=7*37 and 2*259+1=519=3*173.
MAPLE
filter:= n -> andmap(numtheory:-bigomega=2, [n, 2*n+1, 4*n+3]):
select(filter, [$1..2000]); # Robert Israel, Mar 17 2019
MATHEMATICA
fQ[n_]:=2==Plus@@Last/@FactorInteger[n]; Select[Range[2000], fQ[ # ]&&fQ[2#+1]&&fQ[4#+3]&]
CROSSREFS
Cf. A111153.
Sequence in context: A031409 A078550 A295491 * A177222 A078539 A282813
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 19 2007
STATUS
approved