login
A133092
Row sums of triangle A133091.
3
1, 4, 6, 16, 15, 36, 28, 64, 45, 100, 66, 144, 91, 196, 120, 256, 153, 324, 190, 400, 231, 484, 276, 576, 325, 676, 378, 784, 435, 900, 496, 1024, 561, 1156, 630, 1296, 703, 1444, 780, 1600, 861, 1764, 946, 1936, 1035, 2116, 1128, 2304, 1225, 2500, 1326, 2704
OFFSET
1,2
COMMENTS
Even squares interleaved with hexagonal numbers, A000384, such that A000384(n), (n,odd) = A000384((n+1)/2).
FORMULA
G.f.: x*(1 + 4*x + 3*x^2 + 4*x^3)/(1-x^2)^3. - Philippe Deléham, Mar 02 2012
a(n) = (n/4)*(3*n + (n-1)*(-1)^n + 1). - Bruno Berselli, Mar 02 2012
E.g.f.: (x/4)*(x*exp(-x) + (4 + 3*x)*exp(x)). - G. C. Greubel, Oct 21 2017
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - Wesley Ivan Hurt, Jun 08 2021
EXAMPLE
a(4) = 16 = sum of row 4 terms of triangle A133091: (2 + 4 + 6 + 4).
a(4) = 16 = 4^2.
a(7) = 28 = A000384(4), where A000384 = (1, 6, 15, 28, 45, 66, 91, ...).
MATHEMATICA
Table[(n/4)*(3*n + (n - 1)*(-1)^n + 1), {n, 48}] (* Bruno Berselli, Mar 02 2012 *)
PROG
(PARI) for(n=1, 50, print1((n/4)*(3*n+(n-1)*(-1)^n+1), ", ")) \\ G. C. Greubel, Oct 21 2017
(Magma) [(n/4)*(3*n+(n-1)*(-1)^n+1): n in [1..50]]; // G. C. Greubel, Oct 21 2017
CROSSREFS
Sequence in context: A347186 A278239 A328965 * A240034 A302122 A056222
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 09 2007
EXTENSIONS
Corrected and extended by Philippe Deléham, Mar 02 2012
STATUS
approved