login
a(n) = n^p(n), where p(n) is the partition number of n.
1

%I #13 May 11 2019 18:33:56

%S 0,1,4,27,1024,78125,362797056,4747561509943,73786976294838206464,

%T 42391158275216203514294433201,

%U 1000000000000000000000000000000000000000000

%N a(n) = n^p(n), where p(n) is the partition number of n.

%H G. C. Greubel, <a href="/A133032/b133032.txt">Table of n, a(n) for n = 0..20</a>

%F a(n) = n^A000041(n).

%e a(6)=362797056 because the partition number of 6 is 11 and 6^11 = 362797056.

%p with(combinat): seq(n^numbpart(n), n=0..11); # _Emeric Deutsch_, Nov 24 2007

%t Table[n^(PartitionsP[n]), {n, 0, 20}] (* _G. C. Greubel_, Oct 02 2017 *)

%o (PARI) for(n=0,20, print1(n^(numbpart(n)), ", ")) \\ _G. C. Greubel_, Oct 02 2017

%Y Cf. A132641. Partition numbers: A000041.

%K nonn

%O 0,3

%A _Omar E. Pol_, Oct 31 2007

%E More terms from _Emeric Deutsch_, Nov 24 2007