|
|
A133032
|
|
a(n) = n raised to power p(n), where p(n) is the partition number of n.
|
|
1
|
|
|
0, 1, 4, 27, 1024, 78125, 362797056, 4747561509943, 73786976294838206464, 42391158275216203514294433201, 1000000000000000000000000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..20
|
|
FORMULA
|
a(n) = n^A000041(n)
|
|
EXAMPLE
|
a(6)=362797056 because the partition number of 6 is 11 and 6^11=362797056.
|
|
MAPLE
|
with(combinat): seq(n^numbpart(n), n=0..11); - Emeric Deutsch, Nov 24 2007
|
|
MATHEMATICA
|
Table[n^(PartitionsP[n]), {n, 0, 20}] (* G. C. Greubel, Oct 02 2017 *)
|
|
PROG
|
(PARI) for(n=0, 20, print1(n^(numbpart(n)), ", ")) \\ G. C. Greubel, Oct 02 2017
|
|
CROSSREFS
|
Cf. A132641. Partition numbers: A000041.
Sequence in context: A197990 A068327 A066842 * A271385 A110763 A066352
Adjacent sequences: A133029 A133030 A133031 * A133033 A133034 A133035
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Omar E. Pol, Oct 31 2007
|
|
EXTENSIONS
|
More terms from Emeric Deutsch, Nov 24 2007
|
|
STATUS
|
approved
|
|
|
|