login
A132912
a(n)=C(n+2,2)(2n)!/2^n.
1
1, 3, 36, 900, 37800, 2381400, 209563200, 24518894400, 3677834160000, 687754987920000, 156808137245760000, 42808621468092480000, 13784376112725778560000, 5169141042272166960000000, 2233068930261576126720000000, 1100902982618957030472960000000
OFFSET
0,2
COMMENTS
Define T(n,k)=((1+(-1)^n)/2)*C(k-1+n/2, n/2)*n!/2^(n/2). Then T(n,k) has e.g.f. 1/sum{j=0..k, C(k,j)*(-1)^j*x^(2j)/2^j}. T(n,1) is A000680 with interpolated zeros. T(n,2) is A132911.
FORMULA
E.g.f.: 1/(1-(3/2)x^2+(3/4)x^4-(1/8)x^6) (with interpolated zeros);
a(n) -(n+2)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Nov 05 2012
MATHEMATICA
Table[(Binomial[n+2, 2](2n)!)/2^n, {n, 0, 20}] (* Harvey P. Dale, Sep 18 2011 *)
CROSSREFS
Sequence in context: A326273 A224006 A004824 * A303866 A126447 A102921
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 04 2007
EXTENSIONS
More terms from Harvey P. Dale, Sep 18 2011
STATUS
approved