OFFSET
0,3
COMMENTS
Triangle T = A132870 obeys: the g.f. of row n of T^n = (y + n^2)^n for n >= 0.
This yields non-integer values for n = 30, 31, 62, 63, 94, 95, ..., so the integer sequence ends at n = 29.
LINKS
Jinyuan Wang, Table of n, a(n) for n = 0..29
PROG
(PARI) {a(n)=local(M=Mat(1), N, L); for(i=1, n, N=M; M=matrix(#N+1, #N+1, r, c, if(r>=c, if(r<=#N, (N^(#N))[r, c], polcoeff((x+(#M)^2)^(#M), c-1)))); L=sum(i=1, #M, -(M^0-M)^i/i); M=sum(i=0, #M, (L/#N)^i/i!); ); M[n+1, 1]}
A132872_vec(N)=T(N)[, 1] \\ compute all terms a(0..N) at once, in the same time as required for computing only a(N). - M. F. Hasler, Nov 19 2017
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Paul D. Hanna, Sep 29 2007
EXTENSIONS
Edited by M. F. Hasler, Nov 22 2017
b-file with non-integral entries deleted by N. J. A. Sloane, Mar 02 2018
STATUS
approved