%I #10 May 17 2019 02:36:14
%S 1,8,136,2960,73000,1941488,54308944,1575042848,46933604200,
%T 1428339725360,44208223638256,1387283904693728,44037051952177936,
%U 1411537432519587680,45622957237070603680,1485278571381185936960
%N Expansion of 1/(1-8x*c(9x)), where c(x) is the g.f. of A000108.
%F a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^k*9^(n-k). - _Philippe Deléham_, Dec 11 2007
%p c:=proc(x) options operator, arrow: (1/2-(1/2)*sqrt(1-4*x))/x end proc: G:=1/(1-8*x*c(9*x)): Gser:=series(G,x=0,20): seq(coeff(Gser,x,n),n=0..16); # _Emeric Deutsch_, Dec 20 2007
%Y Cf. A000108, A039599.
%K nonn
%O 0,2
%A _Philippe Deléham_, Nov 18 2007
%E More terms from _Emeric Deutsch_, Dec 20 2007