%I #19 Apr 08 2020 17:13:01
%S 1,7,105,2023,44233,1043847,25921833,667598631,17669646729,
%T 477706767559,13136097627625,366267006096999,10331118817064521,
%U 294265822473133063,8452135970510611113,244534782069771034023,7119789572700157711113,208459073966103650720583
%N Expansion of 1/(1-7x*c(8x)), where c(x) is the g.f. of A000108.
%F a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^k*8^(n-k). - _Philippe Deléham_, Dec 11 2007
%F G.f.: 16/(9 + 7*sqrt(1-32*x)). - _Philippe Deléham_, Oct 27 2011
%t CoefficientList[Series[16/(9+7*Sqrt[1-32*x]), {x, 0, 16}], x] (* _Georg Fischer_, Apr 08 2020 *)
%o (PARI) seq(n)={Vec(16/(9+7*sqrt(1-32*x + O(x*x^n))))} \\ _Andrew Howroyd_, Apr 08 2020
%Y Cf. A039599.
%K nonn
%O 0,2
%A _Philippe Deléham_, Nov 18 2007
%E More terms from _Philippe Deléham_, Oct 27 2011
%E a(9) corrected by _Georg Fischer_, Apr 08 2020