This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132864 Expansion of 1/(1-4x*c(5x)), where c(x) is the g.f. of A000108 . 3
 1, 4, 36, 424, 5716, 83544, 1288296, 20637264, 340116276, 5730014584, 98241641656, 1708602483504, 30070563388936, 534554579527024, 9584333758817616, 173120386421418144, 3147337611202622196, 57545643875054919864, 1057492201661230657176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is A135420. [Paul Barry, Sep 15 2009] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k, 0<=k<=n}A039599(n,k)*(-1)^k*5^(n-k). - Philippe Deléham, Dec 11 2007 Integral representation: a(n)=(2/pi)*Int(x^n*sqrt(x(20-x))/(x(16+x)),x,0,20). [Paul Barry, Sep 15 2009] From Gary W. Adamson, Jul 18 2011: (Start) a(n) = upper left term in M^n, M = an infinite square production matrix as follows: 4, 4, 0, 0, 0, 0,... 5, 5, 5, 0, 0, 0,... 5, 5, 5, 5, 0, 0,... 5, 5, 5, 5, 5, 0,... 5, 5, 5, 5, 5, 5,... ... (end) Conjecture: n*a(n)+2*(15-2*n)*a(n-1) +160*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011 a(n) ~ 4^n * 5^(n+1) / (9 * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 08 2014 MATHEMATICA CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-20*x])/(10*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *) CROSSREFS Sequence in context: A244559 A319175 A317147 * A294050 A052700 A167540 Adjacent sequences:  A132861 A132862 A132863 * A132865 A132866 A132867 KEYWORD nonn AUTHOR Philippe Deléham, Nov 18 2007 EXTENSIONS More terms added. Paul Barry, Sep 15 2009 More terms from Vincenzo Librandi, Feb 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 21:08 EDT 2018. Contains 316541 sequences. (Running on oeis4.)