OFFSET
0,1
COMMENTS
Let f(m) be the distance to the nearest prime as defined in A051700(m). Then a(n) = min {m: f(m) = 3n} for n > 0. A132470 uses A051699(m) to define the distance. a(n) <= A132470(n) because here primes at the start or end of a prime gap of size 3n may be picked, which would be discarded in A132470 for n>0; this gives a chance to minimize m here further than in A132470.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..76
Michael S. Branicky, Python program
FORMULA
a(n) = min {m : A051700(m) = 3n} for n > 0.
a(n) = A051652(3*n). [From R. J. Mathar, Jul 22 2009]
MAPLE
PROG
(Python) # see link for faster program
from sympy import prevprime, nextprime
def A051700(n):
return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n)
def a(n):
if n == 0: return 2
m = 0
while A051700(m) != 3*n: m += 1
return m
print([a(n) for n in range(13)]) # Michael S. Branicky, Feb 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 18 2007
EXTENSIONS
7 more terms from R. J. Mathar, Jul 22 2009
4 more terms from R. J. Mathar, Aug 21 2018
a(30) and beyond and edits from Michael S. Branicky, Feb 26 2021
STATUS
approved