login
Largest terms a(n) forming a self-convolution 5th power of an integer sequence (A132840) such that: a(n) <= 5*a(n-1) for n>0 with a(0)=1.
3

%I #4 Mar 13 2015 22:44:06

%S 1,5,25,125,625,3121,15605,78025,390125,1950625,9753123,48765615,

%T 243828075,1219140375,6095701875,30478509371,152392546855,

%U 761962734275,3809813671375,19049068356875,95245341784374,476226708921870

%N Largest terms a(n) forming a self-convolution 5th power of an integer sequence (A132840) such that: a(n) <= 5*a(n-1) for n>0 with a(0)=1.

%o (PARI) {a(n)=local(A,t,r=1);A=if(n==0,[1],vector(n,j,a(j-1)));if(n==0,r=1,t=a(n-1); if(denominator(Vec(Ser(concat(A,5*t))^(1/5))[n+1])==1,r=5*t, if(denominator(Vec(Ser(concat(A,5*t-1))^(1/5))[n+1])==1,r=5*t-1, if(denominator(Vec(Ser(concat(A,5*t-2))^(1/5))[n+1])==1,r=5*t-2, if(denominator(Vec(Ser(concat(A,5*t-3))^(1/5))[n+1])==1,r=5*t-3,r=5*t-4)))));r}

%Y Cf. A132840 (fifth-root); variants: A132831, A132835, A132837.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 10 2007