login
A132801
a(0)=1; a(n) = Sum_{1<=k<=n, gcd(k,n)=1} a(floor(k/2)), where the sum is over those positive integers which are <= n and are coprime to n.
0
1, 1, 1, 2, 2, 4, 2, 7, 5, 8, 6, 17, 8, 23, 11, 20, 20, 44, 15, 57, 25, 40, 35, 94, 40, 101, 62, 114, 79, 184, 50, 215, 118, 155, 133, 247, 123, 378, 189, 311, 194, 532, 117, 597, 295, 373, 337, 801, 297, 825, 393, 741, 530, 1239, 399, 1088, 673, 1042, 833, 1871, 530
OFFSET
0,4
EXAMPLE
The positive integers which are <= 12 and are coprime to 12 are 1,5,7,11. Dividing each of these by 2 and rounding down, we get 0,2,3,5. So a(12) = a(0) + a(2) + a(3) + a(5) = 1+1+2+4 = 8.
MATHEMATICA
a = {1}; For[n = 1, n < 70, n++, s = 0; b = Select[Range[n], GCD[n, # ] == 1 &]; For[j = 1, j < Length[b] + 1, j++, s = s + a[[Floor[b[[j]]/2] + 1]]]; AppendTo[a, s]]; a (* Stefan Steinerberger, Nov 20 2007 *)
CROSSREFS
Sequence in context: A359102 A003980 A286369 * A321199 A324604 A270366
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 17 2007
EXTENSIONS
More terms from Stefan Steinerberger, Nov 20 2007
STATUS
approved