OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = n*(n + 21).
a(n) = 2*n + a(n-1) + 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=22, a(2)=46, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 25 2014
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(21)/21 = A001008(21)/A102928(21) = 18858053/108636528, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/21 - 166770367/4888643760. (End)
From Stefano Spezia, Jan 30 2021: (Start)
O.g.f.: 2*x*(11 - 10*x)/(1 - x)^3.
E.g.f.: x*(22 + x)*exp(x). (End)
MATHEMATICA
Table[n(n+21), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 22, 46}, 50] (* Harvey P. Dale, May 25 2014 *)
PROG
(PARI) a(n)=n*(n+21) \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(n+21) for n in (0..50)] # G. C. Greubel, Mar 14 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Aug 28 2007
STATUS
approved