Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Jan 09 2019 01:54:24
%S 2,7,15,18,20,28,61,152,190,293,377,492,558,564,789,919,942,1332,1768,
%T 2343,2429,2693,2952,3136,3720,3928,4837,5421,5722,6870,7347,8126,
%U 8193,9465,9857,9927,10410,10483,10653,12685,13005,13763,13955,16033,16342
%N Numbers k such that prime(k) + prime(k+1) is a perfect power.
%C First terms absent in A064397: 2, 18, 28, 564, 1332, 3928, 12415, 13005, 16886.
%e 2 is a term because prime(2) + prime(3) = 3 + 5 = 8 = 2^3 (perfect power);
%e 7 is a term because prime(7) + prime(8) = 17 + 19 = 36 = 6^2 (perfect power);
%e 39867 is a term because prime(39867) + prime(39868) = 478241 + 478243 = 956484 = 978^2 (perfect power).
%o (PARI) s=[];for(n=1,41530,a=prime(n)+prime(n+1);if(ispower(a),s=concat(s,n)));s
%Y Cf. A064397 (numbers k such that prime(k) + prime(k+1) is a square).
%K nonn
%O 1,1
%A _Zak Seidov_, Nov 17 2007