The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132683 a(n) = binomial(2^n + n, n). 3
 1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = [x^n] 1/(1-x)^(2^n + 1). G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)*n!). - Paul D. Hanna, Feb 25 2009 a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016 EXAMPLE From Paul D. Hanna, Feb 25 2009: (Start) G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ... A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End) MATHEMATICA Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *) PROG (PARI) a(n)=binomial(2^n+n, n) (PARI) {a(n)=polcoeff(sum(m=0, n, (-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)), n)} \\ Paul D. Hanna, Feb 25 2009 CROSSREFS Cf. A060690, A132684. Cf. A066384. - Paul D. Hanna, Feb 25 2009 Sequence in context: A015013 A269694 A153280 * A059386 A077792 A153079 Adjacent sequences:  A132680 A132681 A132682 * A132684 A132685 A132686 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 21:31 EST 2020. Contains 331975 sequences. (Running on oeis4.)