login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132465 Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(7,n). 1

%I

%S 0,0,0,0,0,0,1,63,1232,13104,94500,518364,2317392,8833968,29630601,

%T 89464375,247351104,634542272,1526183568,3470399856,7511688000,

%U 15564217536,31016698713,59686024167,111284511184,201628350000,355896440900,613353440700,1034083486800

%N Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(7,n).

%Y See A132458 for further information.

%K nonn

%O 1,8

%A Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 06:53 EDT 2020. Contains 337289 sequences. (Running on oeis4.)