%I #19 Oct 05 2021 18:01:14
%S 1,1,1,2,3,2,4,7,7,4,8,17,22,17,8,16,40,60,60,40,16,32,92,158,188,158,
%T 92,32,64,208,401,543,543,401,208,64,128,464,990,1498,1712,1498,990,
%U 464,128,256,1024,2392,3985,5079,5079,3985,2392,1024,256
%N Square array a(m,n) read by antidiagonals, where a(m,n) is the number of ways to move a chess queen from the lower left corner to square (m,n), with the queen moving only up, right, or diagonally up-right.
%C a(m,n) is the sum of all the entries above it plus the sum of all the entries to the left of it plus the sum of all the entries on the northwest diagonal from it.
%H Peter Kagey, <a href="/A132439/b132439.txt">Table of n, a(n) for n = 1..10011</a> (first 141 antidiagonals, flattened)
%H Peter Kagey, <a href="/A132439/a132439.png">Parity bitmap of first 1024 rows and columns</a>. (Even and odd entries and represented by black and white pixels respectively.)
%F a(1,1)=1; a(1,2)=1; a(1,3)=2; a(2,1)=1; a(2,2)=3; a(2,3)=7; a(3,1)=2; a(3,2)=7; a(3,3)=22; a(m,n) = 2*a(m-1,n)+2*a(m,n-1)-a(m-1,n-1)-3*a(m-2,n-1)-3*a(m-1,n-2)+4*a(m-2,n-2), where m >=3 or n >= 3 and a(m,n)=0 if m <= 0 or n <= 0.
%F G.f.: (xy-x^2y-xy^2+x^3y^2+x^2y^3-x^3y^3)/(1-2x-2y+xy+3x^2y+3xy^2-4x^2y^2).
%e The table begins
%e 1 1 2 4 8 16 32 ...
%e 1 3 7 17 40 92 208 ...
%e 2 7 22 60 158 401 990 ...
%e 4 17 60 188 543 1498 3985 ...
%e 8 40 158 543 1712 5079 14430 ...
%e a(3,4)=4+17+2+7+22+1+7=60.
%Y Cf. A035002.
%K easy,nonn,tabl
%O 1,4
%A Martin J. Erickson (erickson(AT)truman.edu), Nov 13 2007