|
|
A132437
|
|
A binomial recursion : a(n)=q(n) (see comment).
|
|
1
|
|
|
0, 1, 3, 15, 97, 767, 7175, 77497, 949047, 12993303, 196655437, 3260367539, 58761008087, 1143864229549, 23917992791139, 534642521054391, 12722568903456817, 321112383611040455, 8568150193087139231
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Let z(1)=x and z(n)=1+sum(k=1,n-1,(-1+binomial(n,k))*z(k)), then z(n)=p(n)*x+q(n).
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 1..400
|
|
FORMULA
|
Lim n-->infty p(n)/q(n)=(Pi-2)/(4-Pi)=1.329896183162743847239353...
From Vaclav Kotesovec, Nov 25 2020: (Start)
E.g.f.: -2-x + exp(x/2)*((4+Pi)/2 - 2*arcsin(exp(x/2)/sqrt(2))) / sqrt(2- exp(x)).
a(n) ~ (4 - Pi) * n! / (2*sqrt(Pi*n) * log(2)^(n + 1/2)).
a(n) ~ (4 - Pi) * n^n / (sqrt(2) * exp(n) * log(2)^(n + 1/2)). (End)
|
|
MATHEMATICA
|
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(-1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
Rest[CoefficientList[Series[-2 - x + E^(x/2)*((4 + Pi)/2 - 2*ArcSin[E^(x/2) / Sqrt[2]]) / Sqrt[2 - E^x], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Nov 25 2020 *)
|
|
PROG
|
(PARI) r=1; s=-1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
|
|
CROSSREFS
|
Cf. A135147, A135148, A135149, A135150, A135074, A135075.
Sequence in context: A060148 A143435 A331325 * A331610 A331618 A128081
Adjacent sequences: A132434 A132435 A132436 * A132438 A132439 A132440
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Benoit Cloitre, Nov 20 2007
|
|
STATUS
|
approved
|
|
|
|