

A132421


a(n) = LCM of the integers b(k), over all k where 1 <= k <= n, where b(k) = the kth integer from among those positive integers which are coprime to (n+1k).


1



1, 2, 3, 20, 420, 90, 1155, 6552, 990, 340340, 38798760, 406980, 314954640, 30630600, 489304530, 18357939600, 21649708080, 2872543794120, 181957885200, 5555594444400, 237972194460, 32681613985020, 378270916143120, 892567605600, 392636231914726800, 1707200400597892200, 1079806447472472720, 4176841288170450900
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) is the LCM of the terms in the nth antidiagonal of the A126572 array.  Michel Marcus, Mar 14 2018


LINKS

Table of n, a(n) for n=1..28.


EXAMPLE

The integers coprime to 4 are 1,3,5,... The first of these is 1. The integers coprime to 3 are 1,2,4,5,... The 2nd of these is 2. The integers coprime to 2 are 1,3,5,7,9,... The 3rd of these is 5. And the integers coprime to 1 are 1,2,3,4,5,... The 4th of these is 4. So a(5) = lcm(1,2,5,4) = 20.


PROG

(PARI) cop(k, j) = {my(nbc = 0, i = 0); while (nbc != j, i++; if (gcd(i, k)==1, nbc++)); i; }
a(n) = lcm(vector(n, k, cop(k, nk+1))); \\ Michel Marcus, Mar 14 2018


CROSSREFS

Cf. A126572, A130767.
Sequence in context: A006246 A110372 A292866 * A132500 A129411 A124447
Adjacent sequences: A132418 A132419 A132420 * A132422 A132423 A132424


KEYWORD

nonn


AUTHOR

Leroy Quet, Aug 20 2007


EXTENSIONS

More terms from Sean A. Irvine, Nov 25 2010


STATUS

approved



