login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132417 a(16j+i) := 8(16j+i) + e_i, for j >= 0, 0 <= i <= 15, where e_0, ..., e_15 are 2, -2, -6, -10, -14, -18, -22, -26, -30, -34, -38, -42, -46, -50, -54, 6. 1
2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290, 294, 298, 302, 306, 310, 314, 382, 386, 390, 394, 398, 402, 406, 410, 414 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Certainly by term n = 8*(2^119 - 1) = 10^36.72..., this sequence and A103747 disagree.

LINKS

Table of n, a(n) for n=0..55.

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

FORMULA

a(n) = a(n-1) + a(n-16) - a(n-17). - R. J. Mathar, Jul 21 2013

G.f.: (2 + 4*x + 4*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 4*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 4*x^10 + 4*x^11 + 4*x^12 + 4*x^13 + 4*x^14 + 68*x^15 + 2*x^16 ) / ( (1+x) *(x^2+1) *(x^4+1) *(x^8+1) *(x-1)^2 ). - R. J. Mathar, Jul 21 2013

EXAMPLE

8*(2^119 - 1) = 5316911983139663491615228241121378296. - Philippe Deléham, Oct 20 2008

CROSSREFS

Cf. A102370 (Sloping binary numbers), A103747 (trajectory of 2).

Sequence in context: A016825 A161718 A122905 * A103747 A290490 A182991

Adjacent sequences:  A132414 A132415 A132416 * A132418 A132419 A132420

KEYWORD

nonn

AUTHOR

Philippe Deléham, Nov 13 2007, Mar 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 03:21 EDT 2020. Contains 337380 sequences. (Running on oeis4.)