The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132411 a(0) = 0, a(1) = 1 and a(n) = n^2 - 1 with n >= 2. 19
 0, 1, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS X values of solutions to the equation X^3 - (X + 1)^2 + X + 2 = Y^2. To prove that X = 1 or X = n^2 - 1: Y^2 = X^3 - (X + 1)^2 + X + 2 = X^3 - X^2 - X + 1 = (X + 1)(X^2 - 2X + 1) = (X + 1)*(X - 1)^2 it means: X = 1 or (X + 1) must be a perfect square, so X = 1 or X = n^2 - 1 with n >= 1. Which gives: (X, Y) = (0, 1) or (X, Y) = (1, 0) or (X, Y) = (n^2 - 1, n*(n^2 - 2)) with n >= 2. An equivalent technique of integer factorization would work for example for the equation X^3 + 3*X^2 - 9*X + 5 = (X+5)(X-1)^2 = Y^2, looking for perfect squares of the form X + 5 = n^2. Another example is X^3 + X^2 - 5*X + 3 = (X+3)*(X-1)^2 = Y^2 with solutions generated from perfect squares of the form X + 3 = n^2. - R. J. Mathar, Nov 20 2007 Sum of possible divisors of a prime number up to its square root, with duplicate entries removed. - Odimar Fabeny, Aug 25 2010 a(0) = 0, a(1) = 1 and a(n) is the smallest k different from n such that n divides k and n+1 divides k+1. - Michel Lagneau, Apr 27 2013 The identity (4*n^2-2)^2 - (n^2-1)*(4*n)^2 = 4 can be written as A060626(n+1)^2 - a(n+2)*A008586(n+2)^2 = 4. - Vincenzo Librandi, Jun 16 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A005563(n-1), n > 1. G.f.: x + x^2*(-3+x)/(-1+x)^3. - R. J. Mathar, Nov 20 2007 Starting (1, 3, 8, 15, 24, ...) = binomial transform of [1, 2, 3, -1, 1, -1, ...]. - Gary W. Adamson, May 12 2008 a(n) = A170949(A002522(n-1)) for n > 0. - Reinhard Zumkeller, Mar 08 2010 Sum_{n>0} 1/a(n) = 7/4. - Enrique Pérez Herrero, Dec 18 2015 Sum_{n>=1} (-1)^(n+1)/a(n) = 3/4. - Amiram Eldar, Sep 27 2022 EXAMPLE 0^3 - 1^2 + 2 = 1^2, 1^3 - 2^2 + 3 = 0^2, 3^3 - 4^2 + 5 = 4^2. For P(n) = 29 we have sqrt(29) = 5.3851... so possible divisors are 3 and 5; for P(n) = 53 we have sqrt(53) = 7.2801... so possible divisors are 3, 5 and 7. - Odimar Fabeny, Aug 25 2010 MAPLE a:= n-> `if`(n<2, n, n^2-1): seq(a(n), n=0..55); # Alois P. Heinz, Jan 24 2021 MATHEMATICA Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 80]] (* and *) Table[If[n < 2, n, n^2 - 1], {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *) Join[{0, 1}, Range[2, 50]^2-1] (* Harvey P. Dale, Feb 27 2013 *) CoefficientList[Series[x + x^2 (-3 + x)/(-1 + x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 01 2014 *) PROG (Magma) [0, 1] cat [n^2 - 1: n in [2..60]]; // Vincenzo Librandi, May 01 2014 (PARI) concat(0, Vec(x+x^2*(-3+x)/(-1+x)^3 + O(x^100))) \\ Altug Alkan, Dec 18 2015 (PARI) a(n)=if(n>1, n^2-1, n) \\ Charles R Greathouse IV, Dec 18 2015 CROSSREFS Cf. A028560, A005563. Sequence in context: A013648 A258837 A131386 * A005563 A067998 A066079 Adjacent sequences: A132408 A132409 A132410 * A132412 A132413 A132414 KEYWORD nonn,easy AUTHOR Mohamed Bouhamida, Nov 12 2007 EXTENSIONS Definition simplified by N. J. A. Sloane, Sep 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 20:39 EST 2022. Contains 358589 sequences. (Running on oeis4.)