This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132364 Expansion of 1/(1-x^2*c(x)), c(x) the g.f. of A000108 . 6
 1, 0, 1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Diagonal sums of A106566 . LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 P. Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2 FORMULA a(0)=1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(2n-3k-1,n-2k)), n>0 . G.f.: (2-x-x*sqrt(1-4*x))/(2-2*x+2*x^3). - Philippe Deléham, Feb 24 2013 Conjecture: +(-n+1)*a(n) +(5*n-11)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n+1)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Aug 28 2015 MATHEMATICA a[0] := 1; a[n_] := Sum[(k/(n - k))*Binomial[2*n - 3*k - 1, n - 2*k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 19 2016 *) CROSSREFS Cf. A030238. Sequence in context: A129429 A084204 A030238 * A110490 A132868 A056783 Adjacent sequences:  A132361 A132362 A132363 * A132365 A132366 A132367 KEYWORD nonn AUTHOR Philippe Deléham, Nov 08 2007 EXTENSIONS Typo in a(n) term corrected Johannes W. Meijer, Sep 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 13:09 EST 2019. Contains 319271 sequences. (Running on oeis4.)