
Recurrences for the man or boy sequence

Eric Schmidt

June 24, 2021

In this note, we prove some recurrences that can be used to compute the “man or
boy” sequence (OEIS A132343). In particular, we prove a recurrence added without
proof to the OEIS entry by Markus Jarderot. Our analysis of the sequence is similar to
that indicated by Donald Knuth in the ALGOL Bulletin, 19.2.3.4. In that note, Knuth
presented recurrences essentially the same as those in the below theorem, but did not
say why they held. He also presented a table similar to the one we provide (though
we have independently computed the values). We will use our own C++ program
(presented in the OEIS entry), rather than Knuth’s original, for understanding the
algorithm.

While various generalizations of the sequence are possible, the only one we consider
is to vary the values for the input parameters 1, −1, −1, 1, 0 in the initial call to A. It
is convenient to view these parameters as indeterminates x1, . . . , x5. Then, the result
of the computation, for an index k, will be a linear combination v(k) =

∑
i ai(k)xi.

The ai(k) have a natural interpretation: ai(k) is the number of times that xi is called
during the computation of v(k). We will see that Jarderot’s recurrence holds even for
v, and hence for the integer sequence arising from substituting any particular values
for the indeterminates.

For negative k, the result is the same as when k = 0. Thus, we can safely restrict
attention to the case where k ≥ 0. It is evident that a5(0) = 1 and a5(k) = 0 for
k > 0, so it is just the other four sequences that we need to worry about. By direct
computation, we can determine ai(k) for small values of k:

1



k a1(k) a2(k) a3(k) a4(k) a5(k)
0 0 0 0 1 1
1 0 0 1 1 0
2 0 1 1 0 0
3 1 1 0 0 0
4 2 1 0 0 0
5 3 2 1 0 0
6 5 3 3 2 0
7 8 6 9 6 0
8 14 15 22 13 0
9 29 37 48 26 0
10 66 85 102 54 0

In particular, the result of Knuth’s original program is 66 − 85 − 102 + 54 = −67.
There are a couple of issues that need to be settled before we prove any recurrences.

First, it is not immediately apparent that the computation terminates. (This question
is a bit more subtle than it may seem. If the expression x4() + x5() is replaced by one
that calls x1, an infinite recursion results.) Second, the computation at first appears
ambiguous: in the expression x4() + x5(), the evaluation of x4() and x5() can have
side effects, introducing the concern that the computed result may depend on the
order of evaluation. However, this turns out not to be the case.

Theorem. The computation terminates and does not depend on the order of evalu-
ation. For k ≥ 6,

a1(k) = a1(k − 1) + a2(k − 1),

a2(k) = a2(k − 1) + a3(k − 1),

a3(k) = a3(k − 1) + a4(k − 1) + a1(k − 1) − 1,

a4(k) = a4(k − 1) + a1(k − 1) − 1.

Proof. We obtain v(k) by calling A(k, x1, x2, x3, x4, x5), where xi is a lambda
that just returns xi. Inside A, we first create a lambda B, which has access to the
parameters of A. The value of k, which decreases whenever B is called, will be called
the index. When k is at most 0, A immediately returns x4() + x5(), which evaluates
to x4 + x5. Otherwise, we call B. This decreases the index to k − 1, and then v(k)
is obtained as the result of calling A(k − 1, B, x1, x2, x3, x4). By induction, we
may assume that v(j) is well-defined for j < k. The execution of A(k − 1, B, x1, x2,
x3, x4) mirrors that for v(k − 1), but the a1(k − 1) calls to x1 in the computation
of v(k − 1) are now instead calls to B. We will call these the top-level B calls. The
computation will terminate as long as all of these calls do.

2



The calls to B decrease the index and then call A(j, B, x1, x2, x3, x4), where j
is the index. Again, these calls terminate, provided all resulting further calls to B
terminate. However, once the index reaches 0, the calls to A just return x4() + x5(),
which evaluates to x3 + x4, so there are no further calls to B introduced. Hence, the
entire computation terminates.

To see that the evaluation order does not matter, we may assume so for all j < k.
In particular, the number of top-level B calls does not depend on the evaluation order.
Additionally, the top-level B calls do not affect the rest of the computation, and affect
each other only by the decreasing of the index. Since we are assuming by induction
that the evaluation order within these calls does not matter, the order for the whole
computation does not matter.

Now we turn to the recurrences. Other than the top-level B calls, the computation
of A(k− 1, B, x1, x2, x3, x4) will result in ai+1(k− 1) calls to xi, for 1 ≤ i ≤ 4. This
accounts for the second terms in the recurrences for a1, a2, and a3. We omit the term
a5(k − 1) from the formula for a4(k), since a5(k − 1) = 0. To analyse the top-level B
calls, let us assume for now that a1(k− 1) ≥ k− 2. In particular, there is at least one
top-level B call. The index will be k − 1 when the first such call is made. Now, the
computation of v(k−1) creates a B lambda, with index k−1, and calls it, and so this
computation is identical to that for the first top-level B call. This accounts for the
first terms in the recurrences for ai. Moreover, our assumption that a1(k−1) ≥ k−2
implies that during the first top-level B call, the index decreases by at least k − 2,
so will be at most 1 afterwards. There are a1(k − 1) − 1 remaining top-level B calls.
Each of them results in a call A(j, B, x1, x2, x3, x4) with j ≤ 0, which results in
x3 + x4. This accounts for a1(k − 1) − 1 appearing in the recurrences for a3 and a4.
The recurrences have now been established for all k for which our assumption holds.

To prove the recurrences for all k ≥ 6, we first look at the above table to see
that they do hold for k = 6. For k > 6, we use induction to simultaneously prove
a1(k − 1) ≥ k − 2 (our prior assumption) and a2(k − 1) ≥ 1. The table shows
that these inequalities hold for k = 7. Moreover, if they hold for some k, then
we know the recurrences hold for that k, so we apply the recurrences to see that
a1(k) = a1(k−1)+a2(k−1) ≥ (k−2)+1 = k−1 and a2(k) = a2(k−1)+a3(k−1) ≥
a2(k−1) ≥ 1, showing that the inequalities hold for k+1. The proof is complete.

Jarderot’s recurrence is now straightforward:

Corollary. For k ≥ 10, we have

v(k) = 5v(k − 1) − 10v(k − 2) + 11v(k − 3) − 6v(k − 4) + v(k − 5).

Proof. This may be verified mechanically, by using the theorem to write both sides

3



in terms of v(k − 5). Indeed, for the left side, we find that

a1(k) = 16a1(k − 5) + 11a2(k − 5) + 11a3(k − 5) + 10a4(k − 5) − 15,

a2(k) = 21a1(k − 5) + 16a2(k − 5) + 11a3(k − 5) + 11a4(k − 5) − 21,

a3(k) = 22a1(k − 5) + 21a2(k − 5) + 16a3(k − 5) + 11a4(k − 5) − 22,

a4(k) = 11a1(k − 5) + 11a2(k − 5) + 10a3(k − 5) + 6a4(k − 5) − 11,

and the same formulas give the components of the right side.

4


