login
G.f.: A(x) = (A_1)^3 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1.
2

%I #2 Mar 30 2012 18:37:04

%S 1,3,6,19,51,129,361,939,2433,6376,16362,41970,107206,271881,687999,

%T 1733695,4352877,10899381,27208492,67745649,168275466,417023747,

%U 1031321451,2545496316,6271166097,15423190770,37869769518,92842013185

%N G.f.: A(x) = (A_1)^3 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1.

%C Self-convolution cube of A132334.

%o (PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^3 +x*O(x^n))); polcoeff(A^3, n)}

%Y Cf. A132334; A132333 (variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 20 2007