This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132334 G.f.: A(x) = A_1 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1. 2

%I

%S 1,1,1,4,7,16,43,89,216,502,1154,2715,6268,14583,33936,78787,183141,

%T 425547,988765,2297533,5338321,12403697,28819646,66962219,155583912,

%U 361492693,839915741,1951499287,4534218339,10535031491,24477592379

%N G.f.: A(x) = A_1 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1.

%C Self-convolution cube is A132335.

%o (PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^3 +x*O(x^n))); polcoeff(A, n)}

%Y Cf. A132335; A132332 (variant).

%K nonn

%O 0,4

%A _Paul D. Hanna_, Aug 20 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.